If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2=56
We move all terms to the left:
7n^2-(56)=0
a = 7; b = 0; c = -56;
Δ = b2-4ac
Δ = 02-4·7·(-56)
Δ = 1568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1568}=\sqrt{784*2}=\sqrt{784}*\sqrt{2}=28\sqrt{2}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28\sqrt{2}}{2*7}=\frac{0-28\sqrt{2}}{14} =-\frac{28\sqrt{2}}{14} =-2\sqrt{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28\sqrt{2}}{2*7}=\frac{0+28\sqrt{2}}{14} =\frac{28\sqrt{2}}{14} =2\sqrt{2} $
| -4(5-x)=20 | | -(x-11)=18 | | 5/3x-1=1/3x+6 | | 4(x-9)-6=-3(-5x+9)-5x | | −2x2−3x+35=0. | | 18+2(x-5)=24 | | -x+6=-x+7 | | -4(3x+5)=-32 | | x+139=132• | | 18+2(x-5)=23 | | -3x-4=-2(x+6) | | 7=12−5t | | 7t=12−5t | | 5(7x+4)=440 | | -3x-4=-2(+6) | | 12(x+3)=2(5x+7) | | 8k−4k−3=13 | | 1/5y+1/3=2.3 | | 2(x-3)÷21=-3 | | X+u=40 | | 10p=-9+11p | | 2.9x-3.2=14.2 | | 2z+7z=18 | | 1/5y+1/3=213 | | -5(-1+2x)=-55 | | 5x^2+9=8x | | s-4+ -1= -5 | | 14q=20+13q | | -1+45x=44+2 | | -3(-4x+10)=-126 | | -5(1x+7)=15 | | 5(-7x+4)=265 |